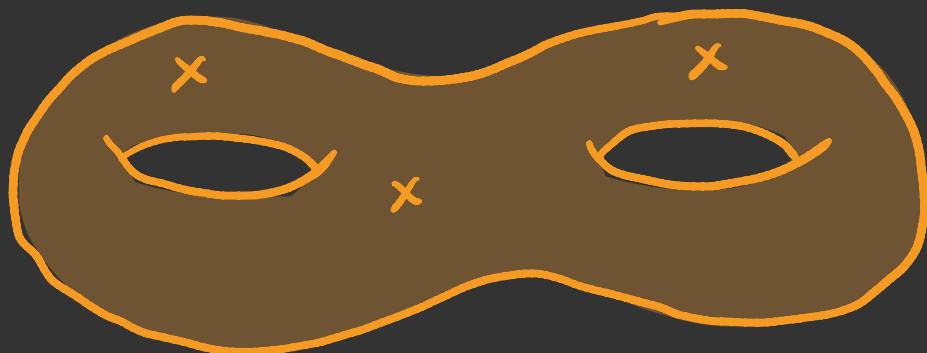


Modular curves



Let $\Gamma \subset \mathrm{SL}_2(\mathbb{Z})$ be a congruence subgroup.

The corresponding modular curve $Y(\Gamma)$ is defined as the quotient space

$$Y(\Gamma) := \Gamma \backslash \mathbb{H}$$

Today we will show that $Y(\Gamma)$ can be

- made into a **Riemann surface**
- compactified

The resulting compact Riemann surface is denoted $X(\Gamma)$

h has the topology as a subset of \mathbb{R}^2 .

Let Γ be a congruence subgroup.

$Y(\Gamma) = \Gamma \backslash h$ has the topology of a quotient space

Lemma: $Y(\Gamma)$ is a Hausdorff space.

Lemma: Let $z_1, z_2 \in h$. Then there exist open sets U_1, U_2 s.t $z_1 \in U_1, z_2 \in U_2$

and for all $\gamma \in \Gamma$: if $U_1 \cap \gamma U_2 \neq \emptyset \Rightarrow z_1 = \gamma z_2$

Claim: Let $z_1, z_2 \in \mathbb{H}$ and let

U_1' be a nbh of z_1 and U_2' be a nbh of z_2 such that the closure of U_1' and the closure of U_2' are compact. Then the set

$\{\gamma \in \Gamma \mid U_1' \cap \gamma U_2' \neq \emptyset\}$ is finite.

Proof : Suppose that $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ belongs to

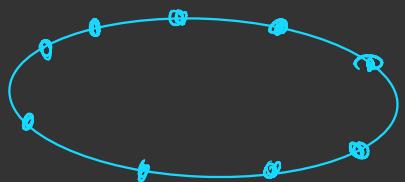
Then there exist $\tau_1 \in U_1'$ and $\tau_2 \in U_2'$ such that $\tau_1 = \frac{a\tau_2 + b}{c\tau_2 + d} \Rightarrow$

$\Rightarrow \text{Im}(\tau_1) = \text{Im}\left(\frac{a\tau_2 + b}{c\tau_2 + d}\right)$

$$\operatorname{Im}(\tau_1) = \frac{\operatorname{Im}(\tau_2)}{|c\tau_2 + d|^2}$$

$$|c\tau_2 + d|^2 = \frac{\operatorname{Im}(\tau_2)}{\operatorname{Im}(\tau_1)} \quad \xrightarrow{\text{only finitely many } (c, d) \in \mathbb{Z}^2}$$

satisfy this condition for some $\tau_1 \in \mathcal{U}_1'$, $\tau_2 \in \mathcal{U}_2'$.



← ellips depends on τ_1 and τ_2
 $(\tau_1 \in \mathcal{U}_1' \text{ and } \tau_2 \in \mathcal{U}_2')$.

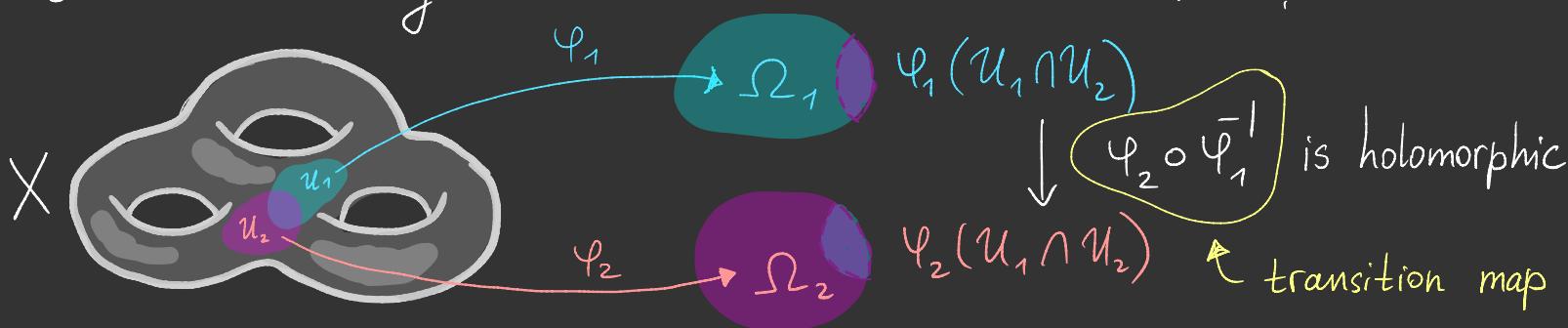
$$\tau_1 = \frac{a\tau_2 + b}{c\tau_2 + d} \Rightarrow -\frac{1}{\tau_1} = \frac{-c\tau_2 - d}{a\tau_2 + b} \Rightarrow \operatorname{Im}\left(-\frac{1}{\tau_1}\right) = \operatorname{Im}\left(\frac{-c\tau_2 - d}{a\tau_2 + b}\right)$$

Only finitely many (a, b) satisfy this condition.

of claim

Definition: A Riemann surface X is a complex manifold of dimension 1.

- Second countable topological space (has countable base of topology)
- Hausdorff
- Any point $P \in X$ has a neighborhood U_P and a homeomorphism $\varphi : U_P \rightarrow \Omega_P$ where Ω_P is an open subset in \mathbb{C}
- Consistency conditions between charts:



Example: Let $\Gamma \subset SL_2(\mathbb{Z})$ be a congruence subgroup

Suppose that for all $z \in \mathbb{H}$ the stabilizer $Stab_{\Gamma}(z)$ is trivial.

Then the modular curve $Y(\Gamma) = \Gamma \backslash \mathbb{H}$ is a Riemann surface.

Proof:

- Second countable \checkmark
- Hausdorff \checkmark
- Charts

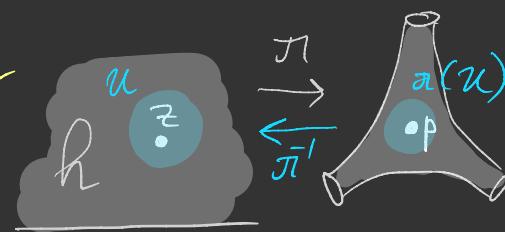
Let $\pi: \mathbb{H} \rightarrow Y(\Gamma)$ be the canonical projection

Let $p \in Y(\Gamma)$ and $z \in \mathbb{H}$ s.t. $\pi(z) = p$

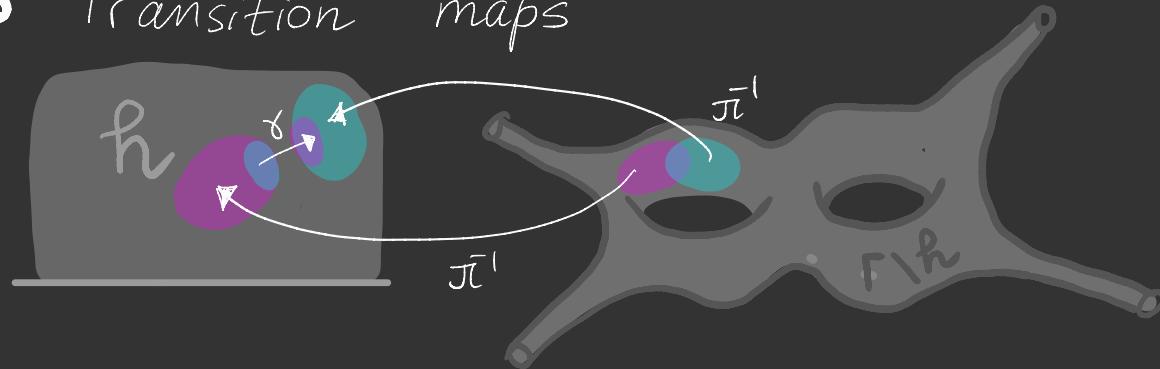
Let U be a nbh of z s.t. for all $\gamma \in \Gamma$:

$U \cap \gamma U \neq \emptyset$ implies $\gamma = id$.

Then $\pi': \pi(U) \rightarrow U$ is a homeomorphism



- Transition maps



are of the form $z \mapsto \gamma z$ for $\gamma \in \Gamma$.

Möbius transformations $z \mapsto \frac{az+b}{cz+d}$ are holomorphic.

Definition: A point $z \in \mathbb{H}$ is an **elliptic point** with respect to a discrete subgroup $\Gamma \subset SL_2(\mathbb{R})$ if $Stab_{\Gamma}(z)$ is non-trivial (as a group of transformations). The point $\pi(z) \in Y(\Gamma)$ is also called elliptic.

Lemma: For each elliptic point $z \in \mathbb{H}$ the group $Stab_{\Gamma}(z)$ is finite cyclic.

Proof: First, we show that the group $Stab_{\Gamma}(z)$ is finite.

$$\frac{az + b}{cz + d} = z \quad cz^2 + (d-a)z - b = 0$$

↙

$$\begin{cases} c \cdot \operatorname{Re}(z^2) + (d-a) \operatorname{Re}(z) - b = 0 \\ c \cdot \operatorname{Im}(z^2) + (d-a) \operatorname{Im}(z) = 0 \end{cases}$$

$$z^2 = (\operatorname{Re}z + i \operatorname{Im}z)^2 = \operatorname{Re}^2(z) + 2i \operatorname{Re}(z) \cdot \operatorname{Im}(z) - \operatorname{Im}^2(z)$$

$$\Rightarrow 2 \operatorname{Re}(z) \operatorname{Im}(z) c + (d-a) \operatorname{Im}(z) = 0 \Rightarrow d-a = -2 \operatorname{Re}(z) \cdot c$$

$$\Rightarrow c (\operatorname{Re}^2(z) - \operatorname{Im}^2(z)) - 2 \operatorname{Re}^2(z) \cdot c - b = 0$$

$$b = -c (\operatorname{Re}(z) + i \operatorname{Im}(z)) = -c \cdot |z|$$

$$\det \begin{pmatrix} d + 2 \operatorname{Re}(z) c & -c |z| \\ c & d \end{pmatrix} = 1 \quad \text{Only } \underbrace{d^2 + 2 \operatorname{Re}(z) cd + c^2 |z|^2 = 1}_{\text{this condition.}}$$

Only finitely many $(c, d) \in \mathbb{Z}^2$ can satisfy this condition.

Now, we prove that $\text{Stab}_F(z)$ is cyclic.

Let $\gamma \in \text{Stab}_F(z)$. We write because z is a fixed point of γ

our elliptic pt $\gamma(z+w) = \sum_{n=0}^{\infty} a_n(\gamma) w^n = z + \sum_{n=1}^{\infty} a_n(\gamma) w^n$

local coordinate around z in \mathbb{R}

Note that $\gamma: \mathbb{H} \rightarrow \mathbb{H}$ is a bijection $\Rightarrow a_1(\gamma) \neq 0$.

Consider the function $a_1: \text{Stab}_F(z) \rightarrow \mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$
group w.r.t mult.

We observe that this function is a homomorphism.

Indeed, $\gamma_1 \circ \gamma_2(z+w) = \sum_{n=0}^{\infty} a_n(\gamma_1) (\gamma_2(z+w) - z)^n$

$$= z + \sum_{n=1}^{\infty} a_n(\gamma_1) (a_1(\gamma_2) w + \bar{O}(w))^n$$

$$= z + a_1(\gamma_1) \cdot a_1(\gamma_2) w + \bar{O}(w)$$

Next, we show that $a_1 : \text{Stab}_\Gamma(z) \rightarrow \mathbb{C}^\times$ is injective.

Suppose that $a_1(\gamma) = 1$ for some $\gamma \in \text{Stab}_\Gamma(z)$ (if)

Since the group $\text{Stab}_\Gamma(z)$ is finite, there exists an integer number $n \geq 1$ such that $\gamma^n = \text{id}$.

Suppose that

$$\gamma(z + w) = z + w + a_m w^m + \underline{O}(w^m) \quad \text{the first nonzero coefficient with } m > 1$$

$$\begin{aligned} \gamma \circ \gamma(z + w) - z &= (\gamma(z + w) - z) + a_m (\gamma(z + w) - z)^{m-1} + \underline{O}(w^m) \\ &= (w + a_m w^m + \underline{O}(w^m)) + a_m (w + a_m w^m + (w^m))^{m-1} + \underline{O}(w^m) \\ &= w + 2a_m w^m + \underline{O}(w^m) \end{aligned}$$

$$\underbrace{\gamma \circ \gamma \circ \dots \circ \gamma}_{n \text{ times}}(z + w) = z + w + n \cdot a_m w^m + \underline{O}(w^m)$$

Now $\gamma^n = \text{id}$ implies $a_m = 0$. with Therefore a_1 is injective.

Since $a_1: \text{Stab}_{\overline{\Gamma}}(z) \rightarrow \mathbb{C}^{\times}$ is injective and \mathbb{C}^{\times} contains only cyclic finite subgroups,



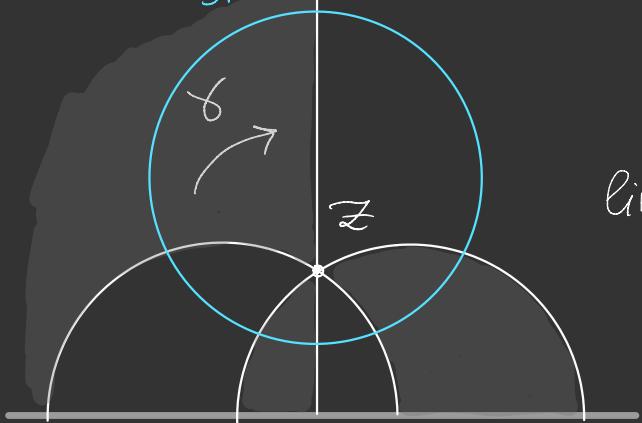
$$\mathbb{C}_1 := \{z \mid |z|=1\}$$

We conclude that $\text{Stab}_{\overline{\Gamma}}(z)$ is a finite cyclic group \blacksquare

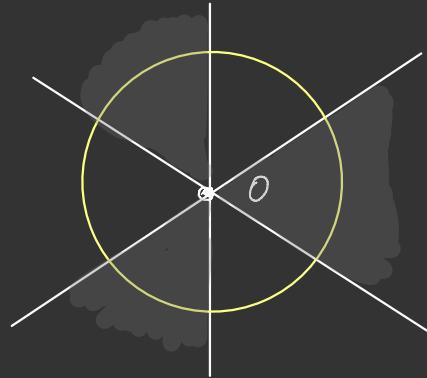
Claim : Each point $z \in h$ has a neighbourhood U such that for all $\gamma \in \Gamma$;
 $U \cap \gamma U \neq \emptyset$ implies $\gamma \in \text{Stab}_{\Gamma}(z)$.

Constructing holomorphic charts around an elliptic point z

$$\mathcal{U} = \{w \mid \rho_{\text{hyp}}(z, w) < \varepsilon\}$$



linear fractional
transformation

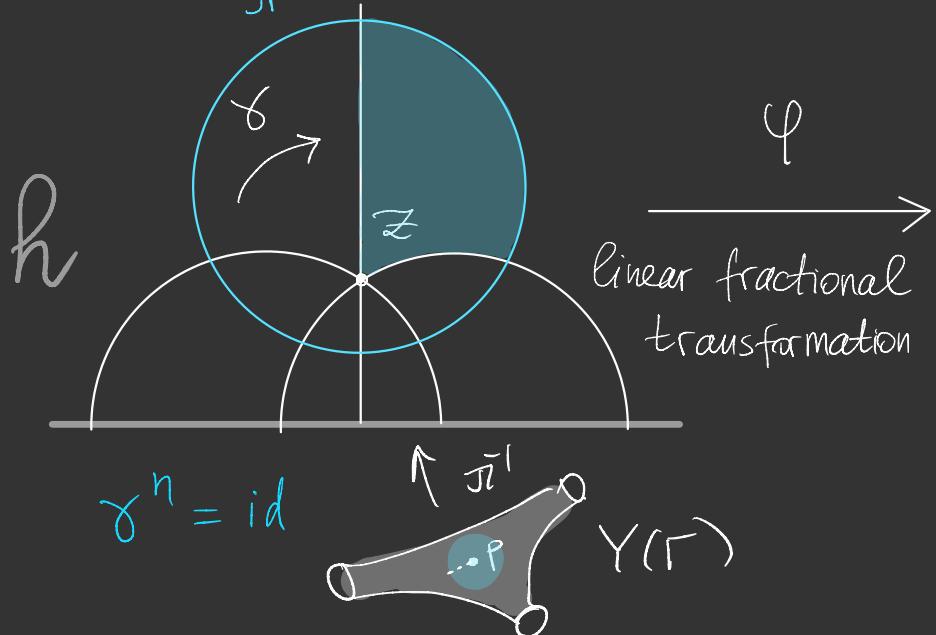


$$\mathcal{D} = \{w \mid |w| < 1\}$$

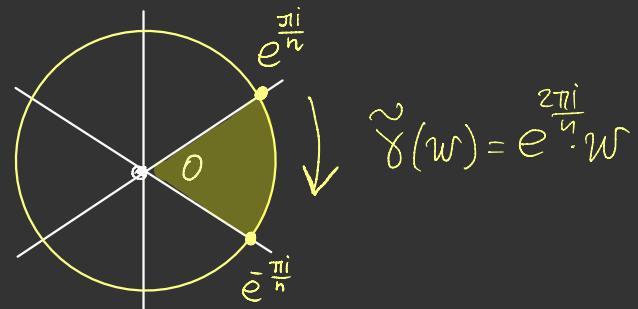
$$\varphi \circ \gamma \circ \bar{\varphi}': \mathcal{D} \rightarrow \mathcal{D}$$

$$\varphi \circ \gamma \circ \bar{\varphi}'(w) = e^{\frac{2\pi i}{n}} \cdot w$$

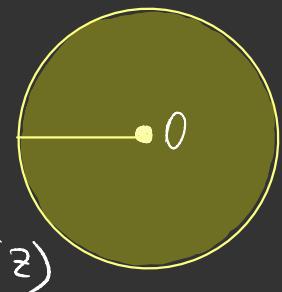
$$\mathcal{U} = \{w \mid g_{hyp}(z, w) < \varepsilon\}$$



$$\mathcal{D} = \{w \mid |w| < 1\}$$



$$\varphi \downarrow \quad z \mapsto \bar{z}^n$$



$$\varphi: \mathcal{D} / \langle e^{\frac{2\pi i}{n}} \rangle \rightarrow \mathcal{D}$$

is a homeomorphism

We set $\psi \circ \varphi^{-1} \circ \pi: \pi(\mathcal{U}) \rightarrow \mathcal{D}$

to be a holomorphic chart about $p = \pi(z)$

Cusps

$$h^* := h \cup Q \cup \{\infty\}$$

$$X(\Gamma) := \Gamma \backslash h^*$$

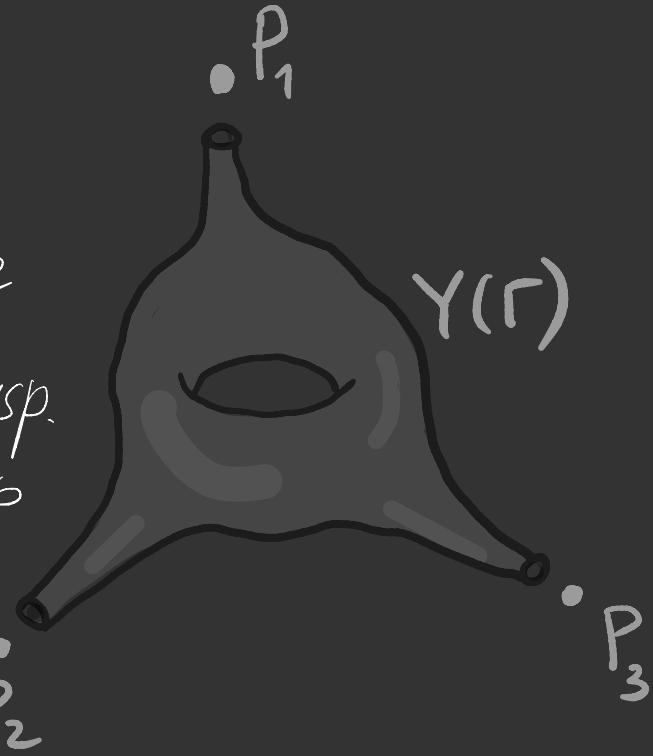
Lemma: The modular curve

$X(1) := \text{SL}_2(\mathbb{Z}) \backslash h^*$ has 1 cusp.

For any congruence subgroup

Γ of $\text{SL}_2(\mathbb{Z})$ the modular curve

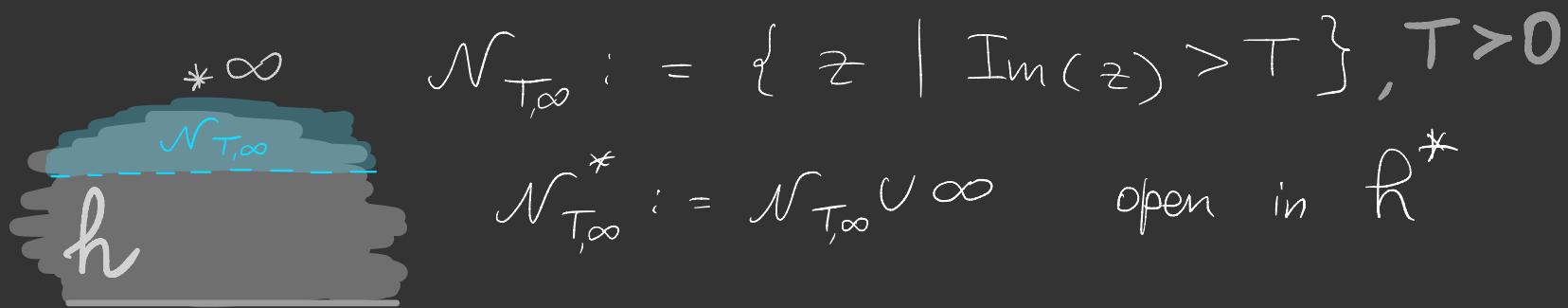
$X(\Gamma)$ has finitely many cusps.



Neighbourhood of a cusp

First, we consider the cusp ∞

We define the n th of ∞ in \mathbb{H}^* :



$$N_{T,\infty} := \{ z \mid \operatorname{Im}(z) > T \}, T > 0$$

$$N_{T,\infty}^* := N_{T,\infty} \cup \infty \quad \text{open in } \mathbb{H}^*$$

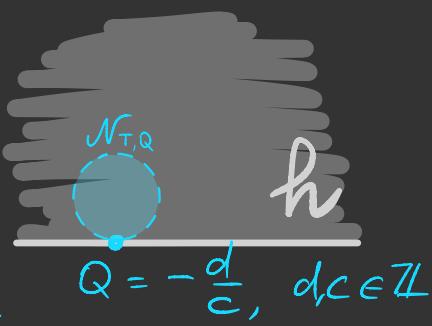
Let c and d be coprime integers and $Q = -\frac{d}{c}$

$$ad - bc = 1$$

$$\frac{aQ + b}{cQ + d} = \frac{a(-\frac{d}{c}) + b}{c(-\frac{d}{c}) + d} = \infty$$

$$N_{T,Q} := \{ z \mid \operatorname{Im} \left(\frac{az + b}{cz + d} \right) > T \}$$

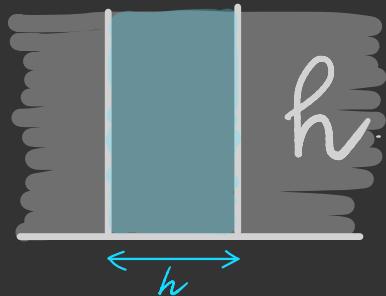
$$N_{T,Q}^* := N_{T,Q} \cup Q$$



$$Q = -\frac{d}{c}, d, c \in \mathbb{Z}$$

$$Stab_{\infty}(\Gamma_1) = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$$

$$Stab_{\infty}(\Gamma) = \left\{ \begin{pmatrix} 1 & n \cdot h \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\} \text{ for some } h \in \mathbb{Z}_{\geq 1}$$

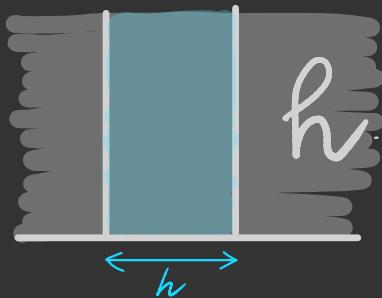


$$X(\Gamma) = \Gamma \setminus \mathbb{H}^*$$

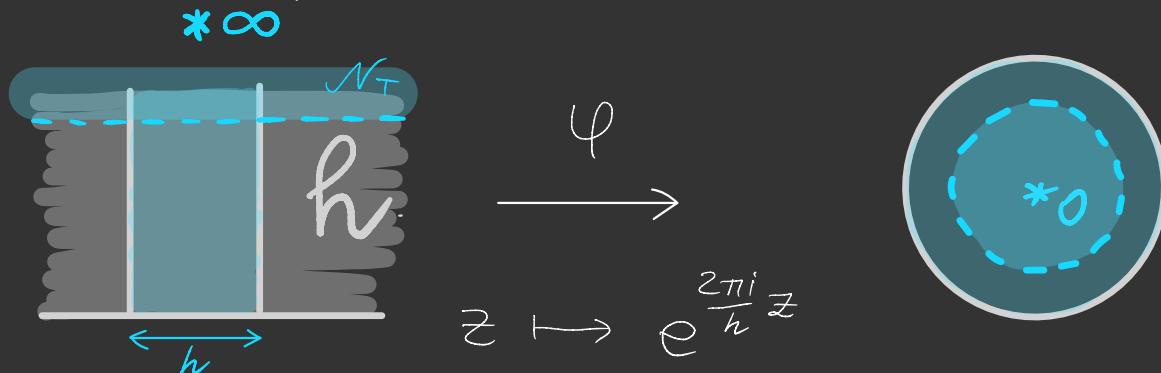
Lemma: The modular curve $X(\Gamma)$ is Hausdorff, connected and compact.

$$\text{Stab}_\infty(\bar{F}_1) = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$$

$$\text{Stab}_\infty(\bar{F}) = \left\{ \begin{pmatrix} 1 & n & h \\ 0 & 1 & 0 \end{pmatrix} \mid n \in \mathbb{Z} \right\} \text{ for some } h \in \mathbb{Z}_{\geq 1}$$



Holomorphic charts around cusps



$$\mathbb{D} = \{w \mid |w| < 1\}$$

We choose $T > 0$ so that for all $\gamma \in \Gamma$:

$$N_T \cap \gamma N_T \neq \emptyset \Rightarrow \gamma \in \text{Stab}_\Gamma(\infty)$$

Exercise:

Why can we choose such T ?

Lemma: The transition maps between the charts we have defined around

- regular points
- elliptic points
- cusps

are holomorphic