
Modular curves



For an'y 
congruence 
subgroup Γ of 
SL2(Z) the 
corresponding 
modular curve 
has been 
defined as the 
quotient space 
Γ\H,the set of 
orbits Y(. into a 
Riemann 
surface t.hat 
can be 
compactified. 
The resulting 
compact 
Riemann 
surface is 
denoted X(Γ).

Let TCSL.tk) be a congruence
subgroup .

The corresponding modular curve #IF) is

defined as the quotient space

Y ( t) : = 1-1h

Today we will show that Ylt) can be
• made into a Riemann surface
• compactified

The resulting compact Riemann surface is
denoted ☒KA



he has the topology as a subset of IR ?
Let t be a congruence subgroup .

Ylttflh has the topology of a quotient space

Lemma : Y ( t ) is a Hausdorff space .

iii.iii. ii.in
Lemma : Let Ze

,
Zzeh .

Then there exist open
sets Un

,
Nz St Z

,
C- Un

, ZE U2

and for all ref : if U , no UFO ⇒ 7=82-2



Claimim Let z, , zzeh and let

Ui be a nbh of z , and UI be a nbh of Zz
such that the closure of U'

,

and the

closure of Ui are compact . Then the set

{ set 1 Ui no Ui -1-0 } is finite .

Proof : Suppose that (Ebd ) belongshot
Then there exist tee Ui and Tze UI
such that

t
,
= %¥d . ⇒

⇒ Im (E) = Im (%a)



Iman = _¥÷p
only finitely

lctztdi = I¥¥¥, ← many (c. d) Eli

satisfy this condition for some t.EU!
,
Tae Ui.

•
•
• •

•

•

← ellips depends on t, and Tz
• •

•

(T, c- Ui and Tae Ui) .

i. = a
⇒ -¥=÷¥•⇒Imf¥)=Imf÷÷•)

Only finitely many ( a. b) satisfy this condition
. gain



Definition : A Riemann surface ✗ is a complex
manifold of dimension 1

.

• Second countable topological space ( has countable
base of topology)

• Hausdorff
•• Any point PEX has a neighborhood Upf
and a homeomorphism 4 : Up →Ip
where Ip is an open subset in E)

chart

•• Consistency conditions between charts :

07
✗

" ri Manu,
I is holomorphic
I.at YIUMI E transition map



Example : Let T CSLIK) be a congruence subgroup .

Suppose that for all 2- E he the stabilizer

stab
,
- Cz) is trivial

.

Then the modular curve YET ) -- Mh is

a Riemann surface .

Proof : • Second countable Vh¥¥¥
• Hausdorff V
• Charts

Let a :L → YET) be the canonical projection
Let peut) and Zeh st acz )=p
Let U be a nth of 2- sit forall JET:
Unsent 0 implies 8 = id .

Then ti
'
: TCU) -5k is a homeomorphism



• Transition maps o

h *FELL
0

are of the form 2- trz for 8 ET.

Milius transformations ztsacztfd are holomorphic .

IMA



Definition 2.2.1. Let Γ be a congruence subgroup of 
SL2(Z).Foreachpoint τ ∈Hlet Γτ denote the isotropy 
subgroup of τ, i.e., the τ-fixing subgroup of Γ, Γτ ={γ 
∈Γ :γ(τ)=τ}. Apointτ ∈His an elliptic point for Γ (or of Γ)ifΓτ is 
nontrivial as a group of transformations, that is, if the 
containment {±I}Γτ ⊃{±I} of matrix groups is proper. The 
corresponding point π(τ) ∈ Y (Γ) is also called elliptic. Note 
that Γτ also fixes the point τ ∈−Hsince Γ ⊂ SL2(R). (“Elliptic 
point” is unrelated to “elliptic curve” from Chapter 1 other 
than each having a distant connection to actual ellipses.) 
The next result will be established in the following section. 
Proposition 2.2.2. Let Γ be a congruence subgroup of 
SL2(Z). For each elliptic point τ of Γ the isotropy subgroup 
Γτ is finite cyclic.

Definition : A point 2- c- he is an elliptic point
with respect to

'

a discrete subgroup task (IR) .

if stab# is non-trivial (as a group of transformations
The point ac⇒ c- YCT) is also called elliptic .

Lemma : For each elliptic point 2- c- h the

group Stabpl⇒ is finite cyclic .

Proof : First , we show that the group staff⇒
is finite .



É¥d=Z cz2+ ( d-a) 2--8--0

I

{c. Retz > + (d-a) Recz) -6=0e. Imei) + (d-a)

T-mczj-OE-ckez-i-tmcz-T-REYzl-2ikecz.IM cz) - ImT⇒CDs
2Rec⇒Im(⇒ e + (d-a) Inez)=o ⇒ d-a=ÉRec⇒ .@

MsCope
( Reta) - T-niu-D-2Recz.ie -8=0
I 2 •

•
• •

•

8 = - e ( Rez) + IÑCZ) ) = - C. 12-1 •
•

•

•

def (d -12 Recite
-CIZI

) =pd2-i2Reczcd-diz-1-1-mmnnm.ied Only finitely many (c. d) c-I' can satisfy
this condition

.



Next, we have to check whether ΓP is cyclic: 
We fix a local coordinate z at P. For any
g ∈ ΓP write
g(z) = X∞
n=1
an(g)zn;
this power series has no constant term since 
g(p) = p. Moreover, note that a1(g) 6= 0, since g 
is
an automorphism of X and hence has 
multiplicity one at every point, in particular at p.
Consider the function a1 : ΓP → C∗. Note that it 
is a homomorphism of groups: a1(gh) is
calculated by computing the power series for 
g(h(z)), and this is
g(h(z)) = g X∞
n=1
an(h)zn!
= X∞
m=1
am(g) "X∞
n=1
an(h)zn#m
= a1(g)a1(h)z + higher order terms
so that a1(gh) = a1(g)a1(h).
We check whether the homomorphism is 
bijective: let g be a group element in the kernel 
of a1.
This means that g(z) = z+ higher order terms. In 
order to show that the kernel is trivial, we
must show that in fact g(z) = z, i.e. that all 
higher order termins of g are zero.
Assume this is not the case: let m ≥ 2 be the 
exponent of the first nonzero higher order term
of g. Therefore g(z) = z + azm mod zm+1 with a 
6= 0.
By induction one can easily check that gk(z) = z 
+ kazm mod zm+1. Since ΓP is finite, g must
have finite order. Hence for some k, gk is the 
identity, i.e. gk(z) = z. Therefore for some k, ka
must be zero, forcing a = 0. This contradiction 
shows that in fact g is the identity.
We have shown that a1 is a bijective 
homomorphis. Since the only finite subgroups 
of C∗ are
cyclic, ΓP is a cyclic group.

Now
,
we prove that stake Cz) is cyclic .

Let 8 E stakeCz)
.

We write because z is

efipwy.pt g
local coordinate around z in hT a fixed point of V

Tczew) = Enfants) w! 2- +⇐ an urn

Note that o : h → h is a bijection ⇒ a. (8) to .

Consider the function a
,

: staff⇒ → ① F- Eko}
group wit

meet
.We observe that this function is a homomorphism.

Indeed
, 8,0yd zero) =En⇒9nhh ) ( rzcztw) -¥

= 2- + II antre ) ( air.>wt Ecw))
"

= 2- tantra) . ahh)Wto (w)



Next
,
we show that a

,
: staff# → ex

is injective .

It
•• Suppose that a. ( 83=1 for some 8 C- StaffHid}
Since the group Stabpcz) is finite, there exists
an integer number not such that y

"
-

- id
.

Suppose that MIA the first nonzero
8 (zero ) = 2- t wt 9mWMt ECW ) coefficient with

m>I

808 Cztw ) - Z = (Tczew) - Z ) + am (Tczew) -ZJMTOTWM)
'

m
M

= (wtamwmto@M) ) tamlwtamwt (WMD toCwm)
= W t 2am WMto CWM)

' CZTW) = 2- trot n . amwmt E fwm)
n times

a"

Now on -- id implies am =D .
f. with •↳

.

Therefore a
, is injective

.



since an : stab plz) → Ex is injective

and ①
×
contains only cyclic finite subgroups,

•
•

•

• o Cl
,
{ z 112-1=1}

•

,
•

We conclude that staff Cz) is a
finite cyclic group %

Claim : Each point 2- c- he has a neighbourhood 'll
such that for all set :

Uh 8M¥01 implies ye stabplz ) .



Constricting holomorphic charts

around an elliptic point z
A- {wlosnyplzio) SE}

4
8

M → • O

z linear fractional

#
transformation

D= {wllwk 13

408 of
'

: D →D

Yoo of
'

(W) = e'th . we



D= {wllwkl }A- trephine}
y µ÷?

• o f Jeune"÷w

homier fractional ÷÷
transformation

8h -- id
ya, 41 ztzh ,

o

y :%aO
We set Yoyogi!.MU)→ D • o

is a homeomorphism
to be a holomorphic chart about p=nc⇒



Cusps
h* : = he UQV Lads

• Pa
x ( t) : = o

axis: she:EI¥::i¥For any congruence subgroup
no1- of State) the modular curve o •

pXlt) has finitely many of
,

3

cusps .



Neighbourhood of a cusp
First

,
we consider the cusp

We define the ahh
. of - in ht :

*a Nt i = { z I Imczy >T } T>O
p '

Nta *

f Nt! : -- Nada open in h

Let c and d be coprime integers and Q= - of
ad - be =L aQtl at E) tf tha

E.
= ¥+d=a O h

•

Nta : = {Z l Im VIII) > T} Nitta :#o.ua Q= - de
,

DREI



Stab
,
Ch) = { to 4)

'

l n EI}
Stab a ( t ) = { ffnjh) In EI} for some he Iss

h .

xa⇒=Nh*
he

temma : The modular curve Xlt ) is Hausdorff
,

connected and compact.



Stab
,
( II) = { to 4)

'

l n eI}
Stab a (F) =L ( f njh) / n e I} for some he Iss

h .

• -

o

' II



Holomorphic charts around cusps
*A

NT
- - - - - - -

- - - y
h .

*o

W
Z ↳ EZTIHZ

D= Lw hurls 13

We choose T > 0 so that for all 8 ET :

Nt hort t 0 ⇒ T E Stab
,
Cao)

Exercise

why can we choose such T ?



Lemma : The transition maps between the

charts we have defined around
• regular points
• elliptic points
• cusps
are holomorphic


